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This paper presents formulas of modal density of nonshallow spherical 
homogeneous and sandwich shells according to classical bending theory, and in 
viscoelastic medium. The influences of transverse, longitudinal, and rotary 
inertia terms and transverse shear deformation on modal density are  examined 
numerically. Numerical results show that, for some values of certain parame- 
ters,  radius-thickness ratio and transverse shear rigidity are  of considerable 
importance. 

INTRODUCTIOIq sphere and a shallow cap is then examined in relation 
to that of the closed sphere. Also, the modal density 

Solutions for response of shells subjected to of an isotropic sandwich sphere is shown. In each 
external excitation can be derived easily on the basis case modal densities are presented for a nondamping 
of modal analysis theoretically, but numerical calcu- state and for a linear viscous damping state. Numer- 
.lation of these.solutions, especially to high frequency ical results for  honlogeneous and sandwich closed 
excitation, may become extremely laborious. New shells a re  presented in graphic form and the character 
ri~aii~cda A i r  iiecdc:! tc simplify c~ lcnln t.ions. of modal density is examined. 

Some information i s  available on the concept S Y ~ ~ B O L S  
of modal density of structural elements [I, 21, which 
is defined a s  the number of modes (i. e., the number a = radius of spherical shell (Fig. 1) 
of natural frequencies) within a unit frequency band; 
this concept is useful for the calculation of the re- d = parameter of transverse shear rigidity 
sponse of a structure to high frequency excitation i3]. of isotropic homogeneous shell, 

d = l/Ba 
Detailed calculations of modal densities for 

shallow structural elements have been made by ds = parameter of transverse shear rigidity 
Bolotin [2], Wilkinson [4], and Erickson [5j during of isotropic sandwich core, 
the past few years, but not for nonshallow elements. ds = 1/75 a 
Still, for the estimation of the response level of a 

Q s 

nonshallow spherical shell in which the assumptions D = bending rigidity, ~h~ /12 (l - v2) 
used ir~ shallow structural elements a re  not appli- 

d cable, modal density may become an important physi- f j  = transverse shear deformation rigidity 

f cal parameter to broadband acoustic excitation. of isotropic homogeneous element, 
5 / 6 ~ h  = 5/6[~h/2(1 + v)] 

! l'he primary purpose of the present paper i s  - 
i to obtain the modal densities of nonshallow spherical U = transverse shear deformstion rigidity 
I 
I shells. Ailother purpose is to investigate the influ- of isotropic sandwich core 

ence of rotary, lo.n,gitudinal inertia terms and trans- 
verse shear deformation on modal densities in the E, ES = Young's modulus 

8i vibration in the high frequency range. 
g = accelerat!on of gravity 

; M d a l  density of a closed isotropic homogene- 
I ous spherical shell is derived first according to 

.? classical bending theory; modal density of azl open (Y 1 n 7 6 4 ~ 8 "  
î 
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h = shell for hOnlOgencOus Closed Isotropic fIonlogeneous Spherical Shell 
o r  distance between surface sheets  f o r  
sandwich (Fig. 1.) From the compatibility conditions and kinetic 

k = 12a2/h2 
equations where t ransverse,  longitudinal, rotary in- 
e r t i a  t e r m s  and t ransverse shear  deformation a r e  

ks = 4a2/h2 
talcen into consideration, the governing equation with 
respect  to t ransverse deflection w of a nonshallow - sphkrical shell due to  classical  bending theory can be 

m = weight of shell element p e r  unit a r e a  given in the differential equation of 6th o rder  a s  

q = a 2 / G  
follows (see ~ p .  A), 

= a2/k D [ H2H2Ho - (l - V ~ ~ H , H ,  + k(1-  v2)H2 
qs s Q 

+ [ - (2 + d) 112 H, + kHz - 3 (1 + v)li] cr a 2  L 
po = some given frequency 

+ [(2d + 1)H2 - I<] a2a4 L L  - a3a6d LLL] (w) 
p = c i rcu la r  frequency 

= 0 
n 

Pm(cos 6) = Legendre function of f i r s t  kind 
where .. 

~ z ( c o s  6 )  = Legendre function of second kind 
1 a2 + c o t & + r -  H,, = - a@2 IT, = Ho + 2 

t = t ime a$ s i n @  ae2  

t = thickness of surface sheet  of sand- 
s 

L a2 L = - -  
wich elcment (Fig. 1 )  g at2 

a = parameter  of extensional rigidity, 
(I - v 2 ) / ~ l l  

Homogeneous solutions of (1) can be  given in the fol- 
lowing form [6]. 

, 3 = p?rhrr,ezer oi e?:te~?~:onal ne;ld:ty ct 
s 

sandwich elcment, 
w = 4 (cos @) + ~"".(cos @)]eiLUi c c s  ne 

n= 1= 1 Pi P1 
(1 - v?/2Ests (2) 

y = characterized elast ic  modulus of 
viscoelastic medium 

6 = viscoelastic damping parameter  

v = Poisson's rat io  

w = angular velocity 

n = modified fr_equcncy, 
n2 = a a3 (ndg)w2 

I Fig. 1. (a) Coordinate system of sphere;  (b) Open 
spherical shell;  (c) Sandwich section 

where 

and h. = functions of angular velocity and other 
1 

shel l  parameters ,  given a s  roots of a cubic equation. 
F o r  modified frequency R in  rather  large range 
(0 2 I ) ,  h. takes r e a l  value (large positive, negative 

1 
s m a l l  absolute value o r  negative of large absolute 
value). Therefore, mode shape of deflection (2) f o r  
fixed n and frequency parameter  R i s  constituted 
by th ree  fundamental mode shapes, one with ampli- 
tude decreasing rapidly from the boundary, another 
with a long wavclength in the @ direction and the 
l a s t  one with a shor t  wavelength in the 6 direction. 
The lat ter  determines the mode shape of the ovcrall  
shell vibration a s  shown in reference [GI. As 
-)\. = p.(p. + 1 ) )  i t  can be considered that p may 

1. 1 take posltlve integer f o r  negative h of large abso- 
lute value. That i s ,  when X i s  negative and lh 1 is 
very large the fractional o rder  p can be  replaced by 
neares t  integer with the sufficient accuracy. It can 
be  a s s u n ~ c d  that in a spherical shell,  the influence of 
boundary conditions on the dcnection is ncgl~gible  in 
the vibration of high frequency from references ['i] 
and [el. Then neglecting the boundai~y conditions and 



using the Legendre's bipoiynomial, we can se t  the 
deflection of Eq. (1) a s  follows, 

Assumption of expression (3) for the deflection seems 
to be quite satisfactory, because (3) i s  a series of 
orthogonal functions and any arbitrary function can 
be expanded in the series of (3). 

Functions P:(COS 0). Q~ (COS 6) a r e  trigo- 
nometric expansions summed #rough cos m@ or  
sin m0. Suffix m indicates the mth order harmonic 
mode shape in @ direction. By substitution of (3) 
into (I), the following equation can be deduced. 

where 

X = m(m + 1) 
A, B, C = functions of modified frequency R and 

othcr shell parameters, given later. 

Equation (4) may be regarded a s  a relation between 
only m and R, but there i s  the limitation m 2 n. 
The number of frequencies N(p) smaller than a 
given frequency p = po corresponds to the number 
of lattice points of (m, n) in the domain S in 
Fig. 2(a) and may be determined approximately from 
the ?re2 S fcr k r g e  po, 2s h2s boon indic~tnd  ir. 
many references. 

Generally i t  nlay be said that the difficulty in 
the calculation of modal densities exists in obtaining 
the area S, which i s  given in a double integral with 
curved boundaries. Here the expression (3) of de- 
flection simplifies the calculation of this area, a s  i s  
indicated in Fig. 2(a). 

Fig. 2. (a) Wave number bounded by a given fre- 
quency for spherical shell; @) Constant 
frequency curves given by Equation (4) 

Note that the number of frequencies that cor- 
respond to the complirnental area ST in Fig. 2(a) has 
to  be taken into consideration by the exchange of 

coordinates 0 and a in Eq. (3) (i. e . ,  rotation of 
coordinate ~ ~ c s  @ and e). Therefore, in the cal- 
culation of modal density, the area St A S = 25 
should be used; 

and with the definition of modal density 

The relation of coefficients shows that Eq. (4) pro- 
vides two positive and one negative roots for rather 
large values of R (for instance; R r 1.0); then the 
relation between a given frequency p, and (m, n) 
can be shown ideally in Fig. 2(b). Note that we use 
the larger area for the calculation of the modal den- 
sity. That i s ,  the largest root of Eq. (4) for a given 
frequency should be used in Eq. (6 ) ,  which must be 
rewritten as: 

( p )  2 (  - 1) 

where X ,  equals the maximum root (positive) of (4) 
for 0,. 

A = -4 + (1 - v2)d - (2 4- d)R2 

B = 4 -  4(1 - v2)d + (1- v2)k- Id2 +2(2 +d)o2 

+ (1 + 2d)ff (7 ) 

C = 4(1 - v2)d - 2(1 - v7k-  (1 + 3v)kQ2 

+ [k - 2(2d + l)]@ - dCf 

If the influence of transverse shear deformation i s  
negligible, we can se t  d = 0 in Eq. (7). If we wish 
to neglect the terms due to rolary inertia, the gov- 
erning equation presented in reference 161 must be 
used. Equations (4) and (Ga) remain valid, however, 
and the coefficients a r e  given a s  follows: 

A = -4 - R2 

B = 4 + (1 - v2)k - W + 2@ (8) 

C = -2(1 - v2)k - (1 + 3 v ) W  + kiY 



If the only transverse inertia term is  taken into con- 
sideration, the coefficients become 

A = -4 

B = 4 - kn2 + (1 - va)k (9) 

C = - 2(1- v3k + 2 m 2  

Open Shell (Nonshallow Domain) 

Spherical shells a r e  often used in an open form 
a s  shown in Fig. l (b) ,  and Eq. (6a) i s  not applicable 
for an open sphere. An approxin~ate calculation of 
modal density, a s  follows, i s  proposed. 

'As we a r e  concerned with the response in the 
high frequency band, the mode index number m in 

where 

1 a2 a2 +I&+-- I, = - 
ag2 @ ad, g 2  ae2 1, = r , + 2  

(b + al)  (1, + L) (1, + a3)w = 0 (123 

Then we can set  the deflection a s  

cos no 
w =$$ ejdh(& @)(  sin . no 

n=O i=l 
(3) takes on very largc values. If we consider the In Bessells differential equation with extremely large 
nature of high-order Legendre bipolynomials with re- index n, eigenva1ue6 can be given approxirnatcly 
spect to cos @, the following expression may be a p  in the following form [I]. 
plicable for the deflection with sufficient accuracy, 

k = m2rr2 
w m  

Therefore, substitution of (13) into (12) yields the 
relation bettvecn po and m, which i s  similar to (4), 
and modal density i s  given a s  

m1 = integer and equa: to (iri@o )m 
m = mode index number for an open sphere 

(not necessarily an integer) 
@, = open angle [i. e . ,  Fig. 1 (b)] 

Here the possible se t  of (ml, n) must be taken in the 
range 0 < ml ,  n s mo in spite of the restriction of 
m1 2 n in Eq. (lo), because in (10) the mode shapes 
a r e  given by exchange of coordinate axes exclusive, 
similar to (3). Substituting (10) into (I) ,  we can cal- 
culate modal density by the procedure described 
earlier: 

where Mo(p) i s  given in (Ga). The governing range 
of (11) for @, will be shown bolow. 

Shallow Shell 

Previous papers presented the modal density of 
a spherical cap, though in the Cartesian coordinates. 
The author will show only the relation bctween the 
shallow shell and the aforementioned shell in circular 
coordinates. 

With the approximation of sin d, - @, 

cot 6 -+I/@, the governing Eq. (1) can be presented a s  

where X = m2n2 and the cubic equation witii re- 
spect to X becomes the same a s  (4). 

The open shell modal density proposed in (1l)may 
be rewritten for rather large m a s  

In comparison with ibis and (14), expression (11) i s  
valid in such a domain of open angle 4, a s  

Sandwich Shell 

Thin sandwich panels with a small cell shape 
usually a r e  used in the formation of complex shapes 
such a s  nonshallow spheres. Then the assumption re-  
mains valid that h/a i s  sufficiently small in corn- 
parison with unity, and the thickness of surface 
sheets of sandwich panel becomcs so much smaller 
than the other size parameter that the bending stiff- 
ness of these face sheets i s  negligible. &loreover, 
i t  may be presumed that the sandwich shell has the 
same nature in any circumferential direction, that 
is ,  isotropic in @ and 8 directions. 



The governing equation in this case i s  (see for 
Ap. B): 

pa2 H~ - (1 - v2)dsH2H2 + (1 - vz)ks H~ 

and 
4 + d  

+ tG s) 
Mv(p) = 0 

&(I - 2ds)H, - ks] ~ L L  - 5 <as d s ~ L L 1  

for 
w = o  (16) 

where -- - 

Setting the deflection a s  in (3) and substituting into 
(16), we can obtain the coefficients a s  follows: 

Eqs. (4) and (6a) a re  valid in this case, and then 
Eqs. (11) and (14) a r e  still  valid for a nonshallow 
open shell and a shallow shell, respectively. 

When a shell lies in a viscoelastic medium, the 
differential operator with respect to time t takes 
the following form: 

The square of the modified frequency can be given a s  
(see Ap. C): 

where 

ia,2 = aa2(iii/g)wg nondamping 

@ = =a2 (%/g)w2 value of this case 

Modal density can be calculated by substitution of 
(19) into (4) and (6a) and differentiation with respect 
to w. 

Numerical Calculation 

If modal density (6a) has any singular point, i t  
must be in such a case that roots of Eq. (4) satisfy 

3X2 + 2 A X +  B = 0 

simultaneously. This takes place for the equal roots 
of Eq. (4), which a r e  negative for a value of 
0.8 < < 1.0  from the relation of coefficients and 
roots of (4), o r  more clearly in numerical calculation 
161. The remaining root i s  positive and a s  in the cal- 
culation of modal density, maximum root of Eq. (4) 
i s  required for any 0. Thus, there i s  no singular 
point in (6a). 

Eigenvalues that correspond to low frequency 
modes a r e  assumed to be in the domain 0.8 < n < 1.0 
161, [7], and response in such a low frequency range 
i s  calculated more accurately by the classical modal 
~na!ysis methcr?. tthzr by the rr.~!.'! r l z n ~ i e  zxthcd. 
Therefore, numerical rezults will be s h o w  for O > 1. 

The variations in m d a l  density of an isotropic hc- 
mogeneous shell (6a) with modified frequcncy 0 a r e  
shown in Figs. 3(a.) and @) for a/h = 50 and 100, re- 
spectively. In the calculation the following values 
a r e  used: 

and four curves a re  considered. 

i. (transverse + longitudinal + rotary) 
inertia terms + transverse shear deformation 

ii. (transverse + longitudinal + rotary) 
inertia te rms 

iii. (transverse + longitudinal) inertia terms 

iv. transverse inertia terms 



280 - and iv become flat rapidly and keep constant 
V = 0 3  value. 

260 - 

4. In modal density radius-thiclmess ratio a/h 
seems to be the most important paralnetcr as 

1" 220 
may be seen by the change in level in the 
curves from Figs. 3 (a) and (b). 

k 

200 - 
Modal density of isotropic sandwich shells are  

180 - given in Fig. 4(a) and @) for a/h = 50 and 100, 
(3). (4) respectively, with variations in shear deformation 

160- 
rigidity. With the assumption that 

I I I I 
0 5 10 15 20 

= 5/6[(Esh)/2(1 T v)], numerical computation is  
n css ide red  for three cases (v = 0.3) : 

a 
(a) i; = 50 2ts 12 -- 1. - = l.O-,ds - 

h 5 (1 - v) 

Fig. 3. Modal density of an isotropic homogeneous 
closed spherical shell 

From Fig. 3 ,  we note: 

1. When rotary inertia and transverse shear 
deformation are included in the kinematic 
equation, modal density increases with fre- 
quency (see curves i and ii). This indi- 
cates that these terms may not be negli- 
gible in the analysis of response in the high 
frequency band. 

2. The difference behveen curve (i) and the 
others indicates the considerable influ- 
ence of transverse shear deformation on 
modal density. Variation of a/% appears 
to influence slightly the ratio of increase 
of curve i with frequency. 

3 .  There is no difference between curves iii 
and iv; that i s ,  modal density is  scarccly 
affected by longitudinal inertia terms in 
spite of rather high frcquency range. Note 
that modal density as consiclered here re- 
lates to transverse deflection. Curve iii 

Terms of transverse, longitudinal, and rotary in- 
ertia and transverse shear dcformation are  taken into 
consideration in these three cases. 

a 
(a) i; = 50 

V.0.3 
280 I 

l80L  
L I I I I 
0 5 10 15 20 

n 
a 

@) -i; = I00 

Fig. 4. Modal density of an Isotropic sandwicll 
closed shperieal shell 



1. Curve (1) represents the model dccsiiy for 
extrcmcly large t and in curves (2) and 

s ) (3) shear deformation rigidity of sandwich 
core becomes relatively large. Results 
show the considerable effect of transverse 
shear deformation in modal density. 

2. When the ratio t /h decreases, its influ- 
S ence on the curves becomes rapidly slight, 

I\ 
and for a rather small ratio, modal density 
decreases with increased frequency. We 
a r e  also able to determine the ratio t /h 

S to make modal density constant. 

3.  The decrease and increase ratio of curves 
with frcqucncy becomes small with in- 
crease of a/h in al l  cases, and this point 
i s  a little different from the homogeneous 
shell. 

xhere  

a 
= dJ + U - = Q  D @ 

a$, = - 1 W ' + V - - Q  
sin @ D 0 

1 k = - g o  k = 1 1  - B  cotm)  @ a @  0 a s i n @ @  6 

1 

2 % = -  k =1+2 k = -  12a2 
k Y 5k hz 

a a ( , = -  t = -  L = % -- a2 
a@ ae  g atz 

and see  reference [GI. 
I 

Approximating as  ky- k, F;: 1, we can deduce 
4' In densib'' the ratio a/h seems to one differential equation from ( A h )  through (Alc) a s  be  the most important parameter. 

follows : 
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APPENDIX A ' H, = H, + (1 - v) 

On the basis of classical bending theory, kinet- q=Lc 
ic  equations of spherical shell elements a r e  deduced kE 

from reference [9] as  follows: x = &@  sinm mu)^ +- v1 
sin @ 

(sin q5 N )' + N' + cos @ N - sin @ Q 
OL~J 0 e@ 9 Compatibility condition can be given in ihe following 

- a sin @ L(v + a b $  ) = 0 (-414 
equation from strain-displacement relations and corl- 

0 stitutive equations: 

(sin@ N )' N' - cos @ N - sin @ Q 
@ e@ 8 0 H2(x) - (1 + v) H, (w) - aa2L(w) - aa2L(*) 

- a s i n @  L(u + a&$ ) = 0 
@ (Alb) - 20. + v) qL(x) - aa2k,L($ + 2 a a 2 q ~ ~ ( w )  

(sin @ Q@)O + Q; + sin @ (No + Nm) 
+ 4 0  + v)qL(w) - aa2k2LH,(w) = 0 ('43) 

- a sin 6 L(w) = 0 (A1 c) 

(sin 0 M$ + M1 - cos @ M + a sin 6 Q 
@@ €3 @ 

a2 2 - - a sin @ L(; u + k B ) = 0 (Ald) k Y @  

(sin (6 M )' + M' + cos @ M + a sin @ Q 
95 e Q@ e 

a2 2 
- - a s i n @ ~ ( ; v + k  k 



I Eliminating x from (A2) and (A3), we can get finalijr, - A - P P ~ ~ ~  

F o r  sandwich shell,  if we s e t  

and rewri te  inertia t e r m s  in (Ald) and (Ale) a s  

(3 + k,+ 4 < 1  + v>dk,) kinetic equations and compatibility equation of Ap. A 
a r e  valid. Finally we can deduce the governing equa- + kaa2(l  + f  + tion a s ,  

- (1 - v2)d2k, + 4qLIa2a4 LL (w) = 0 I 
where usually a/h 7 > 1  and then k 77 lI Neglecting 
l / k  in comparison with unity and using D = 5/G Gh 
and G = (E) /2(1 + v), we can get the governing 
equation with respect  to deflection w of an isptropic 
homogeneous shell. 

where 

If we intend to neglect t ransverse  shear  deformation 
only, we can s e t  ff equal to infinity, that is, d = 0 
in  (A4). 

F o r  the calculation of displacement compo- 
nents u and v, solutions of another differential 
equation that is independent f rom Eq. (A3) must  be 
added to those of (A4), and for  this equation w be- 
comes equal to ze ro  [GI. 

Here we assume that t ransverse  shear  r ig id i tyE 
takes such values a s  Q 



then ds becomes Substitution of (C3) into (C2) yields: 

[ H ~ H , ~  4- @l$Ho k k(1 - v2 - q ) %  
I 

I 

d s =A(%) 5 ( 1 - v )  h <&)= O ( 1 )  
+ 3~ + v)l iq - k ( l -  v 2 ) ( q  - %I] = o ( ~ 4 )  

1 

If k = 4a2/h2 i s  extremely large in comparison [q%H0 - @Hz + 3(1 + v ) h l z  I 
S 

with unity, we can obtain the governing equation ap- 
proximately but with sufficient accuracy: - 2 1  - v 2 ) ]  v = 0 (cs) 
I 

I 
I 

H,% - (1 - v 2 ) d s ~ 2 ~ 2  + (1 - v ~ ) ~ ~ H ~  

1 
Then +I($ +ds)FI2% + k2H2 - 3 ( l  +v)\ osa2L i. If 02 = 0, . Eq. (C5) i s  satisfied identically. 

For the problem of f ree  vibration in a visco- 
elastic medium, the differential operator L( ) with 
respect to time t in kinetic equation (Ala) through 
(Ale) becomes 

ii.  If $ 0 ,  deflection ar must satisfy (C4) 
and (C5) simultaneously. 

This state takes place only when R, and R, take 
some constant value identically without consideration 
of boundary conditions. We can conclude that the 
state Rg # 0 i s  not gencrally valid. 

As an eigenvalue problem, we se t  4 = O and 
r = B/BA. Thcn 

We may treat  more simple kinetic equations and hl, = eigenvalue of nondamping problem 

f where only transverse and longitudinal inertia a r e  
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DISCUSSION 

Mr. Pearson  (NASA Ames Research Ctr.): Mr. Kunieda: Only curve one has  such a 
what-is the significance of the minimum point low point. The reason is that only above that 
of the curves  a t  a frequency paramete r  of frequency does  the t r ansverse  shear  t e r m  be- 
approximately th ree  ? come significant. 


